skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Comstock, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Orbital current has attracted significant attention in recent years due to its potential for energy-efficient magnetization control without the need for materials with strong spin–orbit coupling. However, the fundamental mechanisms governing orbital transport remain elusive. In this study, we systematically explore orbital transport in Ti/Ni bilayers through orbital pumping, drawing an analogy to spin pumping. The orbital current is generated and injected into the Ti layer via the microwave-driven orbital dynamics in Ni, facilitated by its strong spin–orbit correlation. We employed thickness-dependent ferromagnetic resonance measurements and angular-dependent inverse orbital Hall effect (IOHE) detection to probe orbital transport in Ti based on the conventional spin-pumping methodology. The observed enhancement in the damping factor indicates an orbital-diffusion length of ∼5.3 ± 3.7 nm, while IOHE-based estimation suggests a value of around 4.0 ± 1.2 nm, which confirms its short orbital-diffusion length. Furthermore, oblique Hanle measurements in the longitudinal configuration reveal an orbital relaxation time of approximately 16 ps. Our results establish that orbital pumping, analogous to the conventional spin-pumping framework, can serve as a robust technique for elucidating orbital transport mechanisms, paving the way for the design of efficient spin-orbitronic devices. 
    more » « less
  2. Rashba spin–orbit coupling locks the spin with the momentum of charge carriers at the broken inversion interfaces, which could generate a large spin galvanic response. Here, we demonstrate spin-to-charge conversion (inverse Rashba–Edelstein effect) in KTaO3(111) two-dimensional electron systems. We explain the results in the context of electronic structure, orbital character, and spin texture at the KTaO3(111) interfaces. We also show that the angle dependence of the spin-to-charge conversion on in-plane magnetic field exhibits a nontrivial behavior, which matches the symmetry of the Fermi states. Results point to opportunities to use spin-to-charge conversion as a tool to investigate the electronic structure and spin texture. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. The chiral induced spin selectivity (CISS) effect, in which the structural chirality of a material determines the preference for the transmission of electrons with one spin orientation over that of the other, is emerging as a design principle for creating next-generation spintronic devices. CISS implies that the spin preference of chiral structures persists upon injection of pure spin currents and can act as a spin analyzer without the need for a ferromagnet. Here, we report an anomalous spin current absorption in chiral metal oxides that manifests a colossal anisotropic nonlocal Gilbert damping with a maximum-to-minimum ratio of up to 1000%. A twofold symmetry of the damping is shown to result from differential spin transmission and backscattering that arise from chirality-induced spin splitting along the chiral axis. These studies reveal the rich interplay of chirality and spin dynamics and identify how chiral materials can be implemented to direct the transport of spin current. 
    more » « less
  4. Utilization of the interaction between spin and heat currents is the central focus of the field of spin caloritronics. Chiral phonons possessing angular momentum arising from the broken symmetry of a non-magnetic material create the potential for generating spin currents at room temperature in response to a thermal gradient, precluding the need for a ferromagnetic contact. Here we show the observation of spin currents generated by chiral phonons in a two-dimensional layered hybrid organic–inorganic perovskite implanted with chiral cations when subjected to a thermal gradient. The generated spin current shows a strong dependence on the chirality of the film and external magnetic fields, of which the coefficient is orders of magnitude larger than that produced by the reported spin Seebeck effect. Our findings indicate the potential of chiral phonons for spin caloritronic applications and offer a new route towards spin generation in the absence of magnetic materials. 
    more » « less
  5. Abstract Hybrid magnonic systems are a newcomer for pursuing coherent information processing owing to their rich quantum engineering functionalities. One prototypical example is hybrid magnonics in antiferromagnets with an easy-plane anisotropy that resembles a quantum-mechanically mixed two-level spin system through the coupling of acoustic and optical magnons. Generally, the coupling between these orthogonal modes is forbidden due to their opposite parity. Here we show that the Dzyaloshinskii–Moriya-Interaction (DMI), a chiral antisymmetric interaction that occurs in magnetic systems with low symmetry, can lift this restriction. We report that layered hybrid perovskite antiferromagnets with an interlayer DMI can lead to a strong intrinsic magnon-magnon coupling strength up to 0.24 GHz, which is four times greater than the dissipation rates of the acoustic/optical modes. Our work shows that the DMI in these hybrid antiferromagnets holds promise for leveraging magnon-magnon coupling by harnessing symmetry breaking in a highly tunable, solution-processable layered magnetic platform. 
    more » « less
  6. Abstract Low dimensional (LD) organic metal halide hybrids (OMHHs) have recently emerged as new generation functional materials with exceptional structural and property tunability. Despite the remarkable advances in the development of LD OMHHs, optical properties have been the major functionality extensively investigated for most of LD OMHHs developed to date, while other properties, such as magnetic and electronic properties, remain significantly under‐explored. Here, we report for the first time the characterization of the magnetic and electronic properties of a 1D OMHH, organic‐copper (II) chloride hybrid (C8H22N2)Cu2Cl6. Owing to the antiferromagnetic coupling between Cu atoms through chloride bridges in 1D [Cu2Cl62−]chains, (C8H22N2)Cu2Cl6is found to exhibit antiferromagnetic ordering with a Néel temperature of 24 K. The two‐terminal (2T) electrical measurement on a (C8H22N2)Cu2Cl6single crystal reveals its insulating nature. This work shows the potential of LD OMHHs as a highly tunable quantum material platform for spintronics. 
    more » « less